A Schur complement inequality for certain P-matrices
نویسندگان
چکیده
منابع مشابه
Ela on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کاملOn a Schur complement inequality for the Hadamard product of certain totally nonnegative matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کاملInequality for p-norms of positive matrices
This paper derives an inequality relating the p-norm of a positive 2×2 block matrix to the p-norm of the 2×2 matrix obtained by replacing each block by its p-norm. The inequality had been known for integer values of p, so the main contribution here is the extension to all values p ≥ 1. In a special case the result reproduces Hanner’s inequality. As an application in quantum information theory, ...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1998
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(98)10023-x